Acoustic imaging of natural gas seepage in the North Sea: Sensing bubbles controlled by variable currents

J. Schneider von Deimling, J. Greinert, N. R. Chapman, W. Rabbel, and P. Linke

Limnol. Oceanogr. Methods 8:155-171 (2010) | DOI: 10.4319/lom.2010.8.155

ABSTRACT: Natural seepage from the seafloor is a worldwide phenomenon but quantitative measurements of gas release are rare, and the entire range of the dynamics of gas release in space, time, and strength remains unclear so far. To mitigate this, the hydroacoustic device GasQuant (180 kHz, multibeam) was developed to monitor the tempo-spatial variability of gas bubble releases from the seafloor. GasQuant was deployed in 2005 on the seafloor of the seep field Tommeliten (North Sea) for 36 h. This in situ approach provides much better spatial and temporal resolution of seeps than using conventional ship-born echo sounders. A total of 52 gas vents have been detected. Detailed time series analysis revealed a wide range of gas release patterns ranging from very short periodic up to 50 min long-lasting events. The bulk gas seepage in the studied area is active for more than 70% of observation time. The venting clearly exhibits tidal control showing a peak in the second quarter of the tidal pressure cycle, where pressure drops fastest. The hydroacoustic results are compared with video observations and bubble flux estimates from remotely operated vehicle dives described in the literature. An advanced approach for identifying and visualizing rising bubbles in the sea by hydroacoustics is presented in which water current data were considered. Realizing that bubbles are moved by currents helps to improve the detection of gas bubbles in the data, better discriminate bubbles against fish echoes, and to enhance the S/N ratio in the per se noisy acoustic data.