Automated system for sampling, counting, and biological analysis of rotifer populations

Claus-Peter Stelzer

Limnol. Oceanogr. Methods 7:856-864 (2009) | DOI: 10.4319/lom.2009.7.856

ABSTRACT: Zooplankton organisms with short generation times, such as rotifers, are ideal models to study general ecological and evolutionary questions on the population level, because meaningful experiments can often be completed within a couple of weeks. Yet biological analysis of such populations is often extremely time consuming, owing to abundance estimation by counting, measuring body size, or determining the investment into sexual versus asexual reproduction. An automated system for sampling and analyzing experimental rotifer populations is described. It relies on image analysis of digital photographs taken from subsamples of the culture. The system works completely autonomously for up to several weeks and can sample up to 12 cultures at time intervals down to a few hours. It allows quantitative analysis of female population density at a precision equivalent to that of conventional methods (i.e., manual counts of samples fixed in Lugol solution), and it can also recognize males, which allows detecting temporal variation of sexual reproduction in such cultures. Another parameter that can be automatically measured with the image analysis system is female body size. This feature may be useful for studies of population productivity and/or in competition experiments with clones of different body size. In this article, I describe the basic setup of the system and tests on the efficiency of data collection, and show some example data sets on the population dynamics of different strains of the rotifer Brachionus calyciflorus.