Microbial dinitrogen and nitrous oxide production in a small eutrophic reservoir: An in situ approach to quantifying hypolimnetic process rates

Bridget R. Deemer, John A. Harrison and Elliott W. Whitling

Limnol. Oceanogr., 56(4), 2011, 1189-1199 | DOI: 10.4319/lo.2011.56.4.1189

ABSTRACT: Nitrogen (N) dynamics within the hypolimnion of a thermally stratified reservoir were examined to test an in situ approach to measuring dinitrogen (N2) and nitrous oxide (N2O) production rates wherein hypolimnion gas accumulation is used to estimate N2 and N2O production. This previously unpublished approach provides a spatially integrated, time-varying record of N transformation rates that fall well within the range of rates reported for other reservoir systems using other methods. Hypolimnion N2 production averaged 183 µmol N2-N m−2 h−1 with higher rates observed early in a spring stratification event (538 µmol N2-N m−2 h−1) and lower rates observed later in the same stratification event (90 µmol N2-N m−2 h−1). Sediment incubation experiments and hypolimnion nitrate (NO3) data show that, over the course of the summer, progressive NO3 depletion at the sediment-water interface limited N2 production and associated N removal. As rates of N2 production dropped off, rates of N2O production increased (from 4.62 µmol N2O-N m−2 d−1 to 51 µmol N2O-N m−2 d−1, averaging 26 µmol N2O-N m−2 d−1), resulting in significant increases in N2O-N : N2-N ratios as the summer progressed. Also, whereas N2 production appeared to occur predominantly at the sediment-water interface, N2O production was detected throughout the water column, suggesting a role for nitrification as a source of N2O. The use of hypolimnion accumulation to quantify N transformation rates can thus offer new insights into spatial and seasonal N transformation patterns in stratified or otherwise capped aquatic systems.

Article Links

Please Note